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1. Phys. A: Math. Gen. 17 (1984) 851-858. Printed in Great Britain 

Exact solutions of the Dirac equation with a linear scalar 
confining potential in a uniform electric field 

Su Ru-keng and Zhang Yuhong 
Department of Physics, Fudan University, Shanghai, People’s Republic of China 

Received 19 August 1983 

Abstract. The exact solutions of the Dirac equation with a linear scalar confining potential 
in a uniform electric field are given. It is found that, if the scalar potential is stronger than 
that of the electric field, confinement is permanent. On the contrary, if the electric field 
is strong enough, confinement is impossible due to the Klein paradox. 

1. Introduction 

In the phenomenology of the quarkonium (Beavis et a1 1979), the linear potential of 
the Schrodinger equation leads to the best fit of the J / $  spectrum and the y spectrum. 
However, when we extend this potential to the relativistic domain, as is pointed out 
by many authors (Gunion and Li 1975, Critchfield 1976), if the linear potential is 
vectorlike, the Dirac equation can not give the confining result since the Klein paradox 
exists. If we want to get a confining solution from the Dirac equation, we must introduce 
a scalarlike potential. A scalar potential in the Dirac equation is equivalent to a 
dependence of the rest mass upon position. Such potentials appear in the bag model 
(Chodos et a1 1974) and other models of hadrons. 

Recently, by means of the WKB method, Ni and Su (1980) and others (Fishbane 
et a1 1983, Long and Robson 1983), have discussed the mixture of vectorlike and 
scalarlike potentials in Dirac equations and find, if the vectorlike potential is stronger 
than the scalarlike potential, confinement does not occur since the tunnelling solution 
arises. Tunnelling will be forbidden only if the confining potential of the Dirac scalar 
is stronger than the vectorlike potential. However, we must point out that all these 
methods are approximate since the exact solution of (3  + 1)-dimensional Dirac equation 
with linear scalar potential is, to our knowledge, still absent. 

In this paper, after introducing a canonical transformation we can give the exact 
solutions of the Dirac equation with linear scalar potential Az which is only dependent 
on the direction z, as well as with a uniform electrical field which is a simple realisation 
of the Dirac vectorlike linear potential. Our results coincide with those obtained with 
the help of the approximate (WKB) method but, of course, our solutions are rigorously 
accurate. 

2. The exact solutions of Dmc equation with scalarlike potential Az 

The model considered by us consists of a Dirac scalarlike potential V ( z )  = Ar (A is a 
constant), the Dirac equation is 

[ r ’ha/ax’+(mc+Az)]~(r ,  f ) = O  (1) 
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where $(r ,  t )  = 
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+b2, $3, (L4) is a Dirac spinor wavefunction, y” is a 4 X 4  Dirac 
matrix. Let 

$(r ,  t )  =exp[i(p1x+p2y -Ef)/hlcp(z) 

y3h(d/dt)cp( 2 )  = [ ( E /  c )y4  - (mc + A t )  - iy’p, -iy2p2]cp(z). 

where d z )  = ( c p l ,  Q2, cp3,  4, we get 

Operating on both sides of equation (3) by y3h d/dz, gives 

We can rewrite equation (4) as 

After introducing a canonical transformation 

and setting 

5 =  (A/h)”2(z + mc/A) 

equations (5) and (6) reduce to 

(d2/d52)f(5)+{[(E2-~2p:  - c2p2)/Ahc]+ 1 -(’)f(T) = O  

(d2/d52)g(5)+{[(E2-~2p:  -~’p:)/Ahc]- 1 -52}g(t) = O  
where f is either U ,  or i’, and g is either U, or fil. Obviously, (10) and ( 1 1 )  are 
jurt the same as those of the harmonic oscillator Schrodinger equation. If we choose 
the boundary condition z + 00 4 + O ,  we get the energy spectrum 

E = * [2( n + 1)Ahc + c2p:  + (12) 

f(5) = H~+,(O exp(-tt’) (13) 

g(5) = H,(O exp(- -Y) ,  (14) 

and 

where H ( 5 )  is the Hermite polynomial of degree n. Therefore 
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and 

These are the solutions of equations (4), but we cannot guarantee that they must also 
be the solutions of equation (3), since we have operated on both sides of equation (3) 
by the operator y3fi d/dz. To avoid this ambiguity, let us substitute (15) and (16) into 
equation (3). After a short calculation, it can be shown that if we choose the coefficients 
C,,  C2, C3, C, satisfying 

2( n + l)C1 - E ( A ~ ~ c ~ ) - ’ / ~ C ~ +  (p2+ip,(Afi)-1/2C3 = 0 

-( p 2  -ip1)(Afi)-’”C2+ E ( A ~ ~ C ~ ) - ’ / ~ C ,  - 2(n + 1)C4 = 0 

E(Afi~~)-’~~C~-C~+(p~+ip~)(Afi)-~~~C~=0 
-(pz-ipl)(Afi)-1/2C, + C3-E(Afic2)-l /2C4=0, 

(17) 

(18) 

(1 8’) 

i 
(15) and (16) must be the solutions of equation (3). It can easily be shown that the 
determinant of the coefficients of equation (17) is zero if the energy spectrum equation 
(12) is satisfied, and 

C2 =E(Afic2)-’/*C1 + ( ~ ~ + i p ~ ) ( A f i ) - ~ / ~ C ~  

C3 = (p2-ip1)(Afi)-1/2C1 +E(”~C’)-’’~C,. 

Finally, we get the exact solutions of the Dirac equation with linear scalar potential 
V ( z )  = Az as 

Obviously, if we choose the initial condition p ,  = p2 = 0, (191, (20) are confining bound 
states on the z direction, since V is only dependent on z. 

3. The exact solutions combining with a uniform electric field 

If there is a uniform electric field in the z direction, the Dirac equation with scalar 
potential V( z )  = Az will become 

[yp(fi a / a x , - ( ( i e / c ) A , ) + ( m c + A z ) ] ~ ( r ,  t )  = O  (21) 

where A, = -ie&zS,, is a four-dimensional Dirac electromagnetic potential and E is 
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the intensity of the electric field. In a similar way to that used in 0 2 we get 

+ (Az  + mc)’+ p: + p$ - i - 

To solve equations (22) and (23), let us investigate the matrix 

0 
0 -i 0 

i$ ( i  O ) = h (  c i(ee-Ac) 

its eigenvalue equation is 

-A i (ee+Ac) 
i(eE-Ac) -A 

and the eigenvalue A2=A2c2-e2e2 may be real or imaginary. Let us discuss these 
two cases respectively. 

(1) A2c2>  e2e2 
As the eigenvalues are real we can introduce the canonical transformation as follow 

and setting 

we have 

(d2/dt2)f’( 5’) +[a - 1 - tf21f‘( 5’) = 0 

(d2/dt2) g ’ ( 5 ’ )  +[a + 1 - t 2 ] g ’ ( [ ’ )  = 0 

where f‘  is U ;  or fii, and g’ is U ;  or f i i ,  and 

C p: - p ;  ( ~ m c 3 - e ~ w l  
2 2 1/2 [$- h(A2c2-e E ) c2(A2c2- e2E2) 

a =  

Similarly, after some calculation we find the energy spectrum 
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and wavefunctions 

\ -iP2(Ac - eE)’ /2H,( [ ‘ )  

x exp(-t5’2) expCi( p , x  +p2y - ~ t ) / h ]  

/ -Pl(Ac + ee)’12H,(5’) \ 

\-i(Ac- e~)”~H,+, (5 ’ )  - ia2(Ac+ ee )H, , ( ( ‘ ) /  

xexp(-$5’2) exp[i( p lx+p2y-Et ) /h]  

(33) 

(34) 

where 

If we put p1 = p2 = 0 at t = 0, $ I ,  t,b2 are the respective bound states. It means that if 
the scalar potential is sufficiently strong compared to the electric field, the confinement 
will occur. 

(2) A2c2 < e2e2 .  
As the eigenvalues are imaginary, we can introduce the transformation as 

(e& + Ac) 1 /2  (e& + Ac)’12 (::) =((eE-Ac)1i2 -(eE-Ac)’12)( :) 
(eE+Ac)”2 (es+Ac)’/2 (::) = ( ( e &  - Ac)’I2 -(e& - Ac)’I2) ( :) 

and change the variable as 

3 ( e2 E - A 2 ~ 2 ) ’ / ~  Amc3 - eEE 
7 7 =  (Rc) [‘- e2&2-A2C2 

then VI or c2 satisfies 

(d2/ds2)f(17) + ( T 2  + P - i)f(  17) = 0 

V ,  or cl satisfies 

(37) 

(38) 

(39)  
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where 

(50) 
and the corresponding energy spectrum is continuous. Then asymptotically we have 

;; =- a, - .‘;=-- a2 p’; = - P I  p’; = -p’2 = -w 

1 ( e e  + Ac)”’  \ 

and when z + - w  

, ( e &  + Ac)”’  \ 
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where r is the gamma function. The asymptotic behaviour of $’ and i+b4 is similar. 
They represent the incident waves, reflected waves and transmitted waves. Then 

the confinement is not existed even if p1 = p 2  = 0 at t = 0. 

4. Summary and discussion 

We have seen that the exact solution for the linear scalarlike potential V ( z )  = Az 
Dirac equation in the presence of a uniform electric field are parabolic cylinder functions 
(if e 2 E 2 >  A2c2) or Hermite polynomials bound states (if e2E2 < A2c2). The former is 
the tunnelling solution and the famous Klein paradox exists. The latter corresponds 
to the confined solutions in the z direction. This conclusion is in agreement with the 
approximate result obtained by Ni and Su (1980), Fishbane er a1 (1983), but our 
conclusion is rigorous. 

As a working hypothesis, in this paper, we imagine the linear scalarlike potential 
is only dependent on one dimension, say z ,  then we get z direction confinement only. 

Finally, we must point out that if we take the limit A + O  solutions (43), (44), (47), 
(48) will reduce to the solutions of Ley Koo et a1 (1983), and Ni and Sullivan (1982), 
who investigated the behaviour of the Dirac equation in a uniform of electric field. 
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